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Abstract— This article aims at extending fuzzy classification
methods to the recognition of local patterns in time series.
Firstly, a classifier model for patterns will be introduced, which
allows for the prevalent uncertainty in measured data. It is
able of classifying subsequences, and, due to its white box
character, is easily comprehensible as well as modifiable by
users. Based upon that, different pattern recognition tasks will
be introduced, all from the classification perspective, which shift
their emphasis from data mining to diagnosis and prognosis.
Due to the classification approach, diagnosis and prognosis
may always have both quantitative and qualitative character.
Secondly, a fuzzified notion of periodicity will be introduced,
which will also enable a more unambiguous recognition of
recurring patterns. The overall goal of this work is to provide
interpretable and transparent models and tools which may be
combined to create a consistently fuzzy recognition system for
time series patterns.

I. INTRODUCTION AND BASIC MODELS

A. Local phenomena in time series

Under a phenomenon in a time series (from the Greek
ϕαινoµενoν, something that appears) we would like to
understand a pattern that becomes visible and active lo-
cally, i. e. within certain temporal bounds. Despite the term
“bounds”, phenomena may exhibit a certain fade in- and
fade out-behaviour, thusly precise boundaries may not always
be determined. In addition to this temporal uncertainty,
their spatial characteristics (amplitude) will be influenced by
noise or other sources of imprecision, as well. The temporal
locality will rule out many existing approaches to time series
processing, as they rely on a global model of the time series
or even require strict properties such as stationarity. For these
reasons, we will focus on shape-based fuzzy models for the
detection of phenomena throughout the article.

B. A multivariate parametric fuzzy set

Equation (1) describes a parametric membership function
which will form a foundation of the models presented in
this article.1 It is based on the potential function and has
already proven useful in numerous areas of application such
as process surveillance [1], time series modelling [2] and
classifier networks [3]. An advantage of this membership
function is the possibility of representing asymmetric fuzzy
sets by individual parameters for the left- and right-hand-side
function branches.
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1This choice seems advantageous for the reasons presented in this section,
however, the models and methods will be rather general and not irrevocably
be tied to a particular membership function type.
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Apart from the normalised case (a = 1), a represents
the maximum truth value in the course of µ, occurring at
µ(x = r). The six parameters bl/r, cl/r and dl/r determine
the extent and shape of the class. The basic effect of b
(0 < b < 1) and c (c > 0) can be understood from Fig. 1,
whereas d (d ≥ 2) influences the manner of µ’s descent
to zero, with increasing d leading to a sharper descent and
d→∞ resulting in a rectangular shape. This is particularly
interesting since crisp sets such as interval descriptions can
be formulated using (1) as well.
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Fig. 1. Normalised parametric membership function (1).

The interpretability of these parameters facilitates the
formulation of expectations by experts on the one hand, and
enables the quick comprehension of results of a learning step
on the other hand, where the parameters are determined by
an algorithm [1] processing a given set of data representing
one class of objects.2

Another key advantage of this function concept is that a
multivariate parametric membership function can be derived
from a conjunction of one-dimensional sets using a com-
pensatory Hamacher intersection operator [1]. The n-fold
operator is given by (2). Contrary to the often-employed min-
intersection operator, it takes into account all provided truth
values in a compensatory manner. Equation (3) shows the
resulting multidimensional membership function in a simpli-
fied, since symmetric form, and Fig. 2 depicts two examples
of membership functios defined over a two-dimensional
feature space.

2The parameters of (1) may be computed from data as follows: Firstly, the
central, “average” object value r is being calculated. Then cl/r are chosen
such that all learning objects are included in these left- and right-hand-sided
spans. Finally, the shape parameters b and d parameters are—if not specified
manually—being computed to best fit the dispersion of the data.
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Fig. 2. Two exemplary two-dimensional membership functions.

C. A fuzzy model for time series patterns

Based on the membership function concept described in
section I-B, [4] and [2] introduce a model for multivariate
time series sequences. It allows to compute a continuous
degree of similarity between a candidate sequence (time
series pattern) and the model, and therefore treats pattern
matching as a fuzzy classification problem. The model may
be employed for equidistantly sampled univariate or multi-
variate time series.

The basic principle is to describe each point i of a
pattern of length N by a fuzzy class (membership function)
µi(x), x ∈ Rn, which is the reason for the soft tolerance
towards noise and other sources of imprecision that this
model offers.

To compare a pattern against the model, i. e. to classify
a pattern given by N points x(1), . . . ,x(N), one has to
combine the individual classification results of each point of
the pattern to an overall degree of similarity µ ∈ [0, 1] by
means of a fuzzy conjunction operator:

µ = µ1(x(1)) ∩ · · · ∩ µN (x(N)) (4)

Following the fundamental ideas of the membership func-
tion type of section I-B, it suggests itself to employ the
same conjunction operator given by (2). In this manner, the
model for the entire pattern could also be thought of as one
fuzzy class of dimension N · n (number of points in pattern
times dimensionality of the time series). Thusly classification
of time series sequences would be completely in line with
the multivariate classification paradigm behind section I-B.
Contrary to many black box models such as neural networks,
one key advantage of this model is to support partial classi-
fication, i. e. classification of any possible subsequence.

Fig. 3 depicts an example of an univariate pattern (length:
20 seconds, sample time: one second) described by this fuzzy
time series model. By means of this figure one can nicely
comprehend the interpretation of that series of classes as a
corridor with soft boundaries that a candidate pattern would
follow depending on its similarity to this particular pattern.

Fig. 3. Fuzzy description of a time series sequence along with a noisy
candidate pattern (both generated artificially for illustration).

A fuzzy time series pattern may either be formulated by
an expert—enabled by the interpretability of the individual
parameters—or be learned from a set of patterns describing
the same phenomenon, employing the learning algorithm
mentioned in section I-B for each point of the pattern. Fig. 4
shows an exemplary set of pattern instances leading to a
fuzzified description in Fig. 5 using this procedure.

Fig. 4. Several instances of a time series pattern (“Coffee” dataset from
the UCR time series database [5]).

II. PATTERN RECOGNITION TASKS

A. From offline to online pattern recognition
In the following, three different pattern recognition tasks

shall be described with special regard to their respective
degree of online-ness, all of them viewed from a fuzzy
classification perspective. We assume to possess a model
for a pattern of a certain length L that allows to classify
an equally long subsequence of a univariate or multivariate
time series x(t) resulting in a degree of similarity between
the model and the candidate pattern.3

3During this section, no assumptions w. r. t. sampling time etc. will be
made, instead, a more general “continuous” case will be sketched. A suitable
model for equidistantly sampled time series has been proposed in the
previous section.



Fig. 5. Fuzzy time series pattern learned from Fig. 4, here in a 2D
representation. Dark areas correspond to high degrees of membership.

1) The data mining perspective.: The “most offline”
task—depicted by Fig. 6—consists of finding a completed
pattern in a time series being available as a whole. The
results of this task could be locations in the time series where
the pattern is believed to have occurred, complemented by a
degree of similarity µ̂ of the respective subsequence of x(t)
to the pattern described by our model. This corresponds to
transforming the time series x(t) into a series of events (or
symbols). Internally, this could be achieved by classifying
all possible subsequences of the time series and afterwards
deciding on the best match. This kind of pattern recognition
could be part of a data mining task.
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Fig. 6. Offline recognition of completed patterns: Two different patterns
were recognised in a time series x(t).

2) The diagnosis perspective.: A “more online” task
would be to find completed patterns in a streaming time
series, i. e. classifying the latest available subsequence at
every point in time. As we assume a fuzzy model for the
pattern, this results in a time series µ(t) containing the degree
of similarity of the subsequence x([t − L] . . . t) and the
model, cf. Fig. 7. In a truly fuzzy sense, each pattern would
be found at each position in the time series, albeit with a
possibly negligible degree of similarity.

This procedure could be seen as a basis of the previous
pattern recognition task, now without the decision step—
which obviously is not as easily feasible, since a decision
on the global best match cannot be inferred from a yet-to-

be-completed time series µ(t). An interesting side note is,
however, that the evolving classification result µ(t)—being a
time series itself—can again be processed using time series
analysis methods in further steps [6], [7]. Finding completed
patterns in an “online” manner could be interpreted as a
diagnostic task. As in technical or medical diagnosis, a
decision often has to be made immediately after a pattern’s
detection, and thusly under incomplete knowledge.
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Fig. 7. Online recognition of completed patterns. The two time series of
recognition results µA(t) and µB(t) are obtained by sliding the models
over the time series x(t) and continuously computing a degree of similarity
to the respective subsequence.

3) The prognosis perspective.: The “most online” and
generalised task arises from the previous pattern recognition
problem when patterns shall be detected while they are
evolving. This would shift the viewpoint from a diagnosis
to a prognosis perspective. In machine surveillance, for
instance, this would allow operators to perform preventive
maintenance actions before an actual (severe) damage occurs,
rather than just being able to diagnose a damage afterwards.

In doing so, the complexity of the pattern recognition
problem is being increased by another dimension. In addition
to the information which pattern is being active to which
degree at any given point in time t, one has to determine the
time τ elapsed within the respective pattern, compare Fig. 8.
The remainder of the pattern may then be used to forecast
x(t) locally.
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Fig. 8. Matching of evolving patterns. At the current point in time tnow,
the model containing the desired pattern xm(∆t) is being adjusted in its
relative position τ such that the subsequences x([tnow − τ ] . . . tnow) and
xm(0 . . . τ) match optimally.

From the fuzzy logic perspective, obtaining τ would
require a crisp decision, which—in a fuzzy recognition
system—should be left to the user. With truly fuzzy models,



each pattern would be found at every point in time with
all possible relative positions τ . In this article, we therefore
propose to describe this (rather complex) recognition result
for a certain pattern at some point in time t by a fuzzy set
µ(t, τ), 0 ≤ τ ≤ L, which contains the truth values repre-
senting the similarities of the subsequences x([t − τ ] . . . t)
(corresponding to partially elapsed patterns) to the respective
parts of the model, cf. Fig. 9.
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Fig. 9. Online recognition of patterns. At each point in time t, the
maximum truth values of µA and µB w. r. t. τ point to the relative positions
τ associated to the best match of the partially elapsed patterns “A” and “B”.

It appears worthy to mention that describing the recog-
ition result by a fuzzy set—although it might seem overly
complex at first—is perfectly in line with the fuzziness of
the recognition task. When searching for completed patterns,
a truth value µ for each point in time t could be a sufficient
fuzzy recognition result. Searching for incompleted patterns
additionally requires information about τ , which, by means
of the fuzzy set µ(t, τ), is being given in fully fuzzy form.
For each t, µ(t, τ) can be interpreted as a fuzzy measure4

for the relative position τ of the partially elapsed pattern.
One example of the flexibility offered by µ(t, τ) is the

possibility to modify or emphasise certain parts of this set to
focus the detection of the respective pattern to a certain stage
of evolvement τ , for example if the detection of a pattern
would be especially important in its first few seconds. This
could, for instance, be achieved by conjunction with a set
representing a fuzzy window of interest for τ .

B. Relation of the pattern recognition tasks
The three different pattern recognition tasks described in

the previous section are interconnected in a top-down man-
ner. The “more online” tasks are more generalised and may
form the basis for “more offline” tasks. The generalisation
not least becomes visible in the complexity of their results.
The most complex and most general result is a fuzzy set
evolving over time µ(t, τ), proposed in section II-A.3, which
forms the result of online recognition of evolving patterns.

The online recognition of completed patterns can therefore
be seen as a specialised case of the latter task, and, in fact, its

4Although not being a fuzzy number in the sense of Dubois and Prade
[8], especially owing to the very likely multimodality, it matches the spirit
of a fuzzy number as a fuzzified representation of a real-valued number
quite well.

recognition result (the time series of truth values µ(t)) could
be derived from µ(t, τ), as it already contains the degree of
the completed pattern (length L):5

µ(t) = µ(t, τ = L) (5)

To obtain a decision on the position of a detected pattern
for the data mining task described firstly, the time series
of recogntion results µ(t) must be completely available to
enable to globally optimal decision on the best match.

(µ̂, t∗) = f [µ(t)] (6)

A very simple approaches of obtaining such a decision
would be the search for the maximum truth value in µ(t):6

µ̂ = maxµ(t), t∗ = arg max
t

µ(t) (7)

Fig. 10 visualises the relation between the three types of
pattern recognition tasks described in section II-A at the level
of truth values: Trying to find a pattern at each possible
position t with all possible relative positions τ leads to a
series of fuzzy sets µ(t, τ). From this, the “semi-online”
recognition result (online detection of completed patterns)
µ(t) can be derived according to (5). Using a simple decision
procedure as described by (7), the time series µ(t) could be
transformed into a series of events (symbols) as shown in
the picture.
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Fig. 10. Relation of pattern matching tasks.

5The definition in (5) does not necessarily have to hold, this depends on
the manner µ(t, τ) is being computed and if µ(t) and µ(t, τ = L) have the
same semantic meaning, viz. being a truth value describing the similarity
of a completed pattern to the latest available subsequence (length L) of the
time series x(t).

6With this simple approach, however, only one instance of a pattern may
be found in the time series x(t).



III. RECURRING PHENOMENA

Under a recurring phenomenon in a time series we would
like to understand a phenomenon or pattern which repeatedly
occurs in a time series x(t) according to a certain rhythm.
Contrary to strict periodicity, rhythmic behaviour—in the
manner we would like to understand it in this article—does
not necessarily have to be associated with a fixed frequency.
A rhythm might be a frequency that varies, “breathes” in
certain (fuzzy) boundaries, such as many natural rhythms
do, especially in biological systems.

A. Indicating features.

In the following, we would like to denote a phenomenon
in x(t) as recurring according to a certain rhythm if one
or more features y(t) may be derived from x(t) or t
which exhibit similar, characteristic values every time the
phenomenon occurs. The respective y then shall be called
indicating features. These features do not inevitably have
to be temporal features, although the latter are the most
obvious ones, such as the temporal distance to the previ-
ous instance of this phenomenon. Other examples can be
found in calendar-based timestamps, where each consecutive
timestamp is attached several attributes of different temporal
granularities [9], [10] such as day, week, month. For instance,
a phenomenon might occur around the 20th of each month.
Although a precise frequency cannot be given for this repet-
itive behaviour, it clearly obeys a certain rhythm. We could
attach the feature y (“day of month”) to this phenomenon,
which would lead to similar values (e. g. y = day ≈ 20) for
each instance.

B. Fuzzy expectations for indicating features

The goal of this article is to contribute to the online
recognition of evolving patterns, with special emphasis on
recurring patterns. Using fuzzy models and methods may
help to detect patterns in real-world time series, i. e. time
series exposed to noise and imprecision. In section II-A,
however, we saw that in a truly fuzzy sense, every pattern
can be found at every position t of a time series x(t) at all
stages of evolvement τ at the same time.

It therefore appears necessary to make recognition results
less ambiguous—if possible, in a fuzzy manner, i. e. without
crisp decisions.7 These should always be delayed to the
very last step, so that a decision can be made based upon
complete, non-pruned information that also includes the
imprecision of the data and the recognition procedure.

In the case of a recurring phenomenon, it would be
possible to employ its characteristic feature y (e. g. day
of month, see above) as an indicator of its occurrence.
More drastically, we could “turn off” the recognition of this
particular phenomenon if the current value of the respective
feature does not match the phenomenon’s typical behaviour.

7We cannot reduce the number of possible results in a fuzzy sense, as this
involves hard decisions. However, since we are working with fuzzy truth
values, it is possible to emphasise or diminish recognition results and thusly
ease the user’s subsequent decision step.

In this article, we propose to model the typical, expected
behaviour w. r. t. the value of y associated to a phenomenon
by means of a fuzzy set µe(y) defined over the space of
its indicating features. Fig. 11 shows such an expectation
for the examplary phenomenon mentioned above. Assessing
the compliance of a phenomenon’s characteristic features
therefore becomes a second classification task. This approach
resembles the idea of expectation functions presented in [7].

µe

1

y=day2010

Fig. 11. Expectation µe for an exemplary rhythmic phenomenon with the
characteristic feature “day of month”.

C. Using fuzzy expectations
In the following, we sketch two options to employ expec-

tations represented by µe for online pattern recognition:
1) Post-detection assessment: In this case, pattern recog-

nition is being performed as outlined in section II-A, deliv-
ering results in the form of truth values. Before the results
are reported to the user, the occurrence of the respective
phenomenon is being evaluated by comparing its indicating
feature values to the a priori knowledge described by µe.
The results of the latter classification task now have to
be combined with the pattern matching results, e. g. by a
fuzzy conjunction operator, delivering the final recognition
result µr(t), cf. Fig. 12. This procedure may be interpreted
as a fuzzy weighting or “decision” on the importance or
worthiness of the recognition result at this point in time.
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µr(t)

pattern
recognition

classification
results

weighted
result

Fig. 12. Post-detection comparison of expectation and actual occurrence
by conjunction of truth values.

2) Pre-detection activation: While the previous approach
helps to disambiguate recognition results by combining them
with a priori expectations, the latter may also be used
to influence the actual pattern recognition step as shown
in Fig. 13. Although concrete methods remain subject of
further research, the pattern recognition algorithm might, for
instance, try to omit computationally expensive operations if
the pattern is scarcely being expected at this point in time,
instead computing the similarity in a less detailed manner.8

8If necessary, one could even deactivate the recognition of a pattern if it
is not at all being expected right now, i. e. µe(y(t)) � 1. This, of course,
would diminish the fuzzy character of the recognition procedure.
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Fig. 13. Pre-detection assessment of indicating features to trigger,
(de)activate or influence the actual pattern recognition step.

D. Expectations for offline and online recognition

When searching offline or for completed rhythmic pat-
terns, the associated expectation µe(y) only has to represent
the respective indicating feature value at the time the pattern
is completed. In contrast, when searching for evolving pat-
terns, the pattern recognition system has be to alert (µe > 0)
already when the pattern is about to begin. As the indicating
feature value may change during the progression of the
pattern, µe would accordingly have to cover a larger region
of the indicating feature space. Here, the flexibility offered
by a parametric fuzzy set as described in section I-B pays
off: It is easly possible to adjust or learn the parameters such
that the set describes a fuzzy interval of the feature space.

E. Learning expectations (example)

By employing indicating features and expectations, it
furthermore becomes possible to distinguish similar patterns
that are semantically different. In fact, it even becomes
possible to learn different classes of rhythms by analysing
the indicating feature space, e. g. by means of clustering
methods, as in the following example: We process a time
series of the daily number of http requests processed by
a web server, cf. Fig. 14. For demonstration purposes, a
trivial pattern (“low server load”) will be searched. As a
year-based rhythm is being suspected, each instance found
will be attached the indicating feature “day of year”.
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Fig. 14. http requests processed by Chemnitz University’s web server. To
enable comparability between years, the time series was detrended.

Following an offline pattern recognition step, all instances
were examined in the indicating feature space. Visually
or using clustering techniques, four classes can be found.
These classes, subsequently transformed into fuzzy classes
according to section I-B (as shown in Fig. 15), may now

serve as expectations to distinguish semantically different
pattern instances. The first class, for example, corresponds to
the vacation period after the winter term, whereas the second
class of instances is caused by single holidays during the
summer term.
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Fig. 15. Four expectation classes found for the rhythmic phenomenon
“low server load” with the indicating feature “day of year”. The singletons,
representing detected instances and their feature values, have been set to
µ = 0.5 only for visualisation purposes.

IV. CONCLUSIONS

This article aimed at providing tools for pattern recog-
nition in time series that allow fuzzified handling in an
integrative manner. Different facets of pattern recognition
were sketched as fuzzy classification problems. The two main
contributions are the introduction of the online classification
task for evolving time series patterns, and the concept of
fuzzified expectations w. r. t. indicating features. These may
describe rhythmic, but not necessarily periodic behaviour in
a generalised manner, and may be used to disambiguate
recognition results. As shown in an example, they may
help to differentiate semantically different patterns, as well.
Further work will include to jointly apply these methods to
energy time series, which typically feature rhythmic patterns.
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